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The restricted eight-vertex solid-on-solid (SOS) model is an exactly solvable 
class of two-dimensional lattice models. To each site i of the lattice there is 
associated an integer height l i restricted to the range 1 ~< l i ~< r - 1 .  The 
Boltzmann weights of the model are expressed in terms of elliptic functions of 
period 2K, and involve a parameter t/. In an earlier paper we considered the 
case r /=  K/r. Here we generalize those considerations to the case r /=  sK/r, s an 
integer relatively prime to r. We are again led to generalizations of the Rogers- 
Ramanujan identities. 
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vertex model; solid-on-solid model; hard hexagon model; Rogers-Ramanujan 
identities. 

1. THE LOCAL HEIGHT PROBABILITIES Pa 

1.1. Introduction 

In  a p r e v i o u s  p a p e r  to  be r e fe r red  to as A,  (l) the  r e s t r i c t ed  e igh t -ve r t ex  sol id-  

on - so l id  ( S O S )  m o d e l  was  so lved  w h e n  the  p a r a m e t e r  r / h a d  the  va lue  

rl = K / r  (1 .1 .1)  

r d e n o t i n g  a pos i t ive  in teger  a n d  2 K  the  p e r i o d  o f  the  e l l ip t ic  f u n c t i o n s  w h i c h  

n a t u r a l l y  occur .  W h e n  r = 5 the  m o d e l  is e q u i v a l e n t  to  a p r e v i o u s l y  so lved  (z) 

h a r d  s q u a r e  mode l ,  w h i c h  i nc ludes  the  h a r d  h e x a g o n  mode l .  W h e n  r = 4 it 

h a s  b e e n  n o t e d  by  H u s e  (3) t h a t  the  m o d e l  is e q u i v a l e n t  to  the  ze ro  f ield I s ing  

mode l .  
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National University, Canberra 2601 Australia. 

435  

0022-4715/85/0200-0435$04.50/0 �9 1985 Plenum Publishing Corporation 



436 Forrester and Baxter 

Using the corner transfer matrix (C.T.M.) technique the local height 
probabilities Po were calculated for the large but finite system. Then a 
generalization of I. Schur's (4) proof of the Rogers-Ramanujan identities was 
used to transform the expressions obtained from the C.T.M.s into a from 
suitable for taking the thermodynamic limit. 

In this paper we repeat the considerations of A for 

r I = s K / r  (1.1.2) 

where s and r are relatively prime integers (r positive). In general the model 
will no longer be physical as there will be negative Boltzmann factors. 
Nevertheless, the calculation of the height "probabilities" again involve 
generalizations of identities of the Rogers-Ramanujan type. The model is 
therefore of independent interest for this feature. 

1.2.  The Restricted S O S  Model  with q = sK/r 

The restricted SOS model has been defined in A. Consider a square 
lattice f .  With each site i associate an integer height I i. Impose the 
condition that heights on adjacent sites must differ by 1. There are six 
possible configurations, as shown in Fig. 1. Furthermore restrict the heights 
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The six possible arrangements of heights round a face of the lattice. 
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to lie in the interval 1 ~< I i ~ r -  1. With the sites of a face ordered as in 
Fig. 2, associate a weight W(I i, ljI l m ,  In).  We take for the weights [Eqs. 
(1.2.12) of AI 

W(l, l  + l l l -  l , l ) =  W ( l , l -  l ll + l , / ) = a ,  

W(I + 1 ,111-  1 )=  W ( l -  1, l l l ,  l + 1)--fit  (1.2.1) 

W ( l + l ,  l l l ,  l + l ) = T t ,  W ( I - l ,  IIl, I - 1 ) = 6 ,  

where 
a t = p'h(v + rl) 

/~, = p ' h ( ~  - v ) [ h ( w , _  1) h(w,+ ,)] */2/h(w,) 
(1.2.2) 

y, = p ' h ( 2 ~ )  h(w, + ,7 - v) /h(w,)  

6, = p'h(2r/) h(w t - ~ + v)/h(wt) 

The elliptic theta function h is defined by 

h(v) = 2p 1/4 sin ~ -  1 - 2p n cos ~ -  + p2n (1 - (1.2.3) 
n = l  

m n 
,r 

i J 

Fig. 2. The square lattice S ,  showing a typical face (i,j, n, m) and the two sublattices X 
and Y (denoted, respectively, by dots and crosses). 
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where K and K '  are the complete elliptic integrals of the first kind, and p is 
the nome 

p = e -'a('/x (1.2.4) 

which we take to lie in the interval - 1  < p < 1. The quantity p '  is an 
arbitrary constant, and w t is given by 

w t = 2hl (1.2.5) 

We are considering the case when r/is given by (1.1.2). We regard p and r/ 
as parameters, and v as a complex variable. 

The partition function is 

z = ~ l ~  W(l,, lj I lm, lm) (1.2.6) 

where the sum is over all allowed height configurations, and the product is 
over all faces of the lattice. The local height probability is 

Pa = Z - I  2 6(/1' a) H W(li, ljllm, l.) (1.2.7) 

where the ~ is the Kronecker delta, and the product has the same meaning as 
in (1.2.6). l 1 is the height of the center site 1 of the lattice, a is an integer 
between 1 and r -  1. Clearly we have 

r-1 
~ '  ea  = 1 (1.2.8) 
a--1 

It was shown in A that if the model defined by the weights (1.2.2) with 
the restriction that neighbouring heights differ by 1 has the property 

h(wo) = h(wr) = 0 (1.2.9) 

then the star triangle relation (5) is satisfied. With w t given by (1.2.5) and r/ 
given by (1.1.2) the property (1.2.9) holds so the model again satisfies the 
star triangle relation. 

1.3. Symmetry Properties of the Partition Function 

It was shown in A that the partition function Z and the Pa, assuming 
toroidal boundary conditions, are unchanged if W(l, m']  l', m) is multiplied 
by 

60 l- mg I gm/gt' gm' (1.3.1) 
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where co4 = 1 and gl is arbitrary. For example, the choice 

co = i, gl = 1 

negates fl~ and leaves the other weights unchanged. 
The elliptic theta function has the properties 

h(v)  = - h ( - - v )  = - h ( v  + 2K) 

(1.3.2) 

(1.3.3) 

Using (1.3.3) we see either of the substitutions 

v ~ v + 2 K  or r/-~ r /+ 2K (1.3.4) 

merely negate each of the weights and thus leave Z and Pa unchanged. The 
substitution 

v --* - v  (1.3.5) 

and then making the transformation (1.3.1) with co= 1, g t =  [1/h(wt)] 1/2 

interchanges the weights a t and ill, and replaces y~ by at+l and 6 t by Yl-~. 
From Fig. 1 this corresonds to a rotation of the lattice through 90 ~ and thus 
leaves Z and Pa unchanged. Similarly the substitution 

r /~  - r /  (1.3.6) 

corresponds to a rotation of the lattice. If we make both the substitutions 

v ~ K - v and r /~  K -- r/ (1.3.7) 

and then make a transformation of the form (1.3.2) to negative/7~, both Z 
and Pa are unchanged. 

The elliptic theta function has the quasiperiodicity property 

h(v + iK ' )  = (p )  1/2 e-'~'~/~ h(v)  (1.3.8) 

Thus the substitution 

v -~ v + iK'  (1.3.9) 

and then making the transformation (1.3.1) with co= 1 and g l =  
exp( -zr#I lZ /2K)  multiplies each weight by the constant 

c = (p)- i /Ze- '~iv /K (1.3.10) 

Hence Z is multiplied by C N ( N  = number of faces of the lattice), and the Pa 
are unchanged. 
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When 0 < p < i the symmetry  properties (1.3.4), (1.3.6), and (1.3.7) 
imply it suffices to consider the region 0 < r /<  K and - r / <  Re(v)  < 2K -- r/. 
Recalling r / - - -sK/r ,  it is convenient to break the region into "regimes."  
Labeling them in an analogous manner  to those in A we define the following: 

R e g i m e I I :  0 < p <  1, 

: 0 < p < l ,  

R e g i m e I I I :  0 < p <  1, 

: 0 < p <  1, 

Regime VIII:  0 < p <  1, 

s =  1, r / < R e ( v )  < K - - r /  

s =  2, 3 ..... r - -  1, r /<  Re(v)  < 2 K - - r /  

s = 1, 2,..., r -- 2, - - r /<  Re(v)  < r/ 
(1.3.11a) 

s = r - -  1, K -  r /<  Re(v)  < r/ 

s = r - -  1 , - - ( K - - r / )  < Re(v)  < K - - r /  

Regime VII I  has been reported for hard hexagons in Ref. 6. We have 
not included the region s =  1, K - r / <  R e ( v ) < K +  q, the region s - - - i ,  
K +  r /<  2 K - -  r/ nor the region s = r - -  1, - - r /<  Re(v)  < r / - - K .  F rom the 
symmetry  (1.3.7) the first of  these regions is identical to Regime VIII,  while 
from the symmetries  (1.3.7) and (1.3.6) the other two regions are identical to 
Regime II  with s = 1. 

When - 1  < p < 0 and thus I m ( K ' )  = K  the additional symmetry  (1.3.8) 
implies it suffices to consider the region 0 < r /<  K/2, - r / <  Re(v) < K - r/. 
Breaking the region into regimes, we define 

Regime I: - 1  < p 

Regime IV: - 1 < p 

: - l < p  

Regime X: --1 < p 

< 0, s = 1, 2 ..... [ ( r -  I ) /2] ,  r /<  Re(v)  < K - -  r/ 

< 0, s = 1, 2,..., [(r -- 2) /2] , - - r /  < Re(v)  < q 

< 0, r odd, s = (r - 1)/2, (K/2)  -- r /<  Re(v)  < r/ 

< 0 ,  rodd, s = ( r -  1)/2, (1 .3 . l ib )  

- - ( (K/2)  - r/) < Re(v)  < (K/2)  - r/ 

where [ ] denotes the integer part. Here, for r odd and s = ( r -  1)/2 we have 
not included the region - r / <  R e ( v ) <  ( K / 2 ) - r /  since from the symmetry  
(1.3.6) this region is identical to Regime IV with s = (r - 1)/2. 

1.4. The Weights in Terms of the Conjugate Modulus 

The above regimes were defined so that their boundary  separates 
regions with different ground states. To investigate the ground states it is 
necessary to convert the weights to conjugate modulus form. This has been 
done in A [Eq . (A37)  if 0 < p <  1, (A58), i f - - i  < p < 0 ] .  However  the 
expressions in A can be simplified if we use the t ransformat ion (1.3.1) to 
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remove the factors involving the g, from all the weights, and the factors W 1/2, 
w - m  in the weights (A58). Defining the function E ( z , x )  for all complex z 
and Ixl < 1 by 

E ( z , x ) =  ~ ( 1 - - x " - l z ) ( 1 - - x " z - ~ ) ( 1 - - x  n) 
n = l  

or 

= ~ (--1)nxn(n-1)/Zz n (1.4.1) 
n =  - - o o  

we then have 

al = vwln E(xw-1)  

1~1 = ]}(XEl_ 1 El+ 1/(wE~))I/2 E ( w )  

y, = rE(x) e (x 'w) /E(x  ~) 

6, = rE(x) E(xtw-1)/E(x ' )  

(1.4.2) 

where v is independent of x, w, and l and thus irrelevant [it is given explicitly 
in A, Eqs. (A35) and (A56) if we divide those expressions by E(x)], 

E t = E(xt ,  y)  (1.4.3) 

and we have written E(z,  y )  simply as E(z) .  The quantities x, y and w are 
dependent on the sign of p. Denote 

x = e - 4 ~ / g ' ,  w =  e Z~(n-v)/M' (1.4.4) 

Then i f 0 < p <  1, 

M '  = K ' ,  y = xr/s (1.4.5) 

while i f - -1  < p < 0 (and thus K'  = L '  + iK) 

M '  = 2L' ,  y = --x r/2s (1.4.6) 

From the conjugate modulus form of the weights we can determine 
whether or not the model is physical, or can be made physical by a transfor- 
mation of the type (1.3.1) (by physical we mean that all the Boltzmann 
weights are positive). Using the product expansion of the E function (1.4.1) 
we conclude the only physical cases are Regime I I I s  = r -- 1 (yl /r  < w < 1), 
s = l ;  RegimeII s = l  (1 < w < x - 1 ) ,  s = r - - 1 ;  RegimeI s = l  
(1 < w < x - l ) ;  Regime IV s =  1. 
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Let us consider the model defined by (1.4.2) and (1.4.4). Define y by 
the relation 

y U = x  ~, l~</ t~<r--1  (1.4.7) 

We can then give a unified treatment of all the regimes defined by (1.3.11) if 
we allow x to take both positive and negative values with 

I x l < l a n d y t @ x l f o r a n y t a n d l = l , 2 , . . . , r - 1  (1.4.8) 

[This is essential for the weights (1.4.2) to be well defined]. To see this first 
not that analogous to the symmetry property (1.3.7) we have P~ unchanged 
by the substitutions 

both x ~ y / x  and w ~ I / w  (1.4.9) 

Define a generalized Regime III (IIIG, say) by 

RegimeIIIo:  I x l < l w l < l ,  l y l < l x l < l  (1.4.10) 

By writing the definitions of Regimes III, IV, VIII, X (1.3.11) in terms of x, 
y, and w we see immediately these regimes are contained in Regime III G. 
Furthermore the mapping (1.4.9) takes both Regimes I and II into Regime 
III G. Hence denoting the height probability in Regime III~ by ~II~G, ra tx, y,~) 
(in choosing this notation we have used the fact, to be established subse- 
quently, that the P~ are independent of w), and in Regime T (T = I ..... X) by 
P r ( r ,  s, y )  we have 

P~(r ,  s,  y )  = p I I I G ( - - e - -  2~(K/2--n) /L ', - -e  ~K/L', r - -  2s) 

pI I ( r ,  s, y) = pIII~ ,)/K,, e-n~K/K', r -- s) 

I I I  Pa (r, s, .~j--v] --  pIIIofe-4~rn/lf"a t , e-4~K/l'; ' ,  S) 

e~V (r, s, y )  = P~ i I~ (e -  2~n/L ', - -e  -"~c/L', 2s) 

PV"~(r, r -  1, y )  = eIaIIG(e-4~(x-n)/K'  , e -4~K/K', r --  1) 

pX(r, ( r -  1)/2 ,  y )  . ~  - 2 . . / ~ ,  - 1) = Pa (e , - -e  - '~t:/t ' ,  r 

(1.4.11) 

Note in particular 

PlJ t (r ,  s, y) = pII(r, r - s, y) (1.4.12) 

which is a consequence of the symmetry (1.3.7). 
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1.5. The Ground States 

We have seen that Regimes I -X  are contained in Regime III G. Hence in 
discussing the ground states it suffices to discuss this generalized regime, 
with/~ restricted to the values given by (1.4.11). 

First note that Regime III c is not distinct, in the sense that the Pa 
calculated in the region 

Ixl<~lwl<.lxl ~/2, lyl <lxl  < 1 (1.5.1) 

can be deduced from the Pa calculated in the region 

kxl '/2 ~< Iw[ < 1, lyl < Ixl < 1 (1.5.2) 

This follows from the mapping ]analogous to (1.3.6)] 

w -, x /w (1.5.3) 

which rotates the lattice through 90 ~ and thus leaves the Pa unchanged. 
Hence it suffices to consider the region (1.5.2). 

We seek the ground states configuration(s) of the partition function 
defined by the weights (1.4.2). The ground state configuration is defined as 
that which maximizes the absolute value of the partition function (allowing 
for multiplicities) in the limit M'  -* 0, which corresponds to extreme order or 
disorder. From (1.4.4) and (1.4.7) we see this is equivalent to taking 
x, y, w ~ 0, provided I w[ 4:1 i.e., Re(v)4: r/, a condition we shall assume. 
We consider four candidates, which are analogues of known ground states of 
the hard hexagon model and the Ising model (see Fig. 3). Clearly other 
ground states can be constructed by translations of those given in Fig. 3. 
Thus there are two possibilities for each N l and $l (height l on the X or Y 
sublattice), four possibilities for each Qt, and 2 r -  4 for R. 

From Fig. 3 and (1.4.2) we have for the Boltzmann weight per pair of 
sites 

E2(w ) E(x'w) E(x '+ ~/w) 
Ul : E(x t) E(xl+ 1) 

Qt= xl/2E(w)E(x/w) [E(xl-1)E(xl+l)] 1/2 
E(xt ) (1.5.4) 

[. E(x) E(x2/w) ]2/(r-2) 
R = wE(x/w) L E(x/w) E(x ~) w "/~ 

where we have set the constant v in (1.4.2) equal to 1. Note Nt, Qt, and R 
are all unchanged by replacing x t by xty. It is therefore convenient to regard 
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Fig. 3, The ground states and their associated Boltzmann weights per pair of  sites. Dotted 
lines indicate the heights all have the same values along that diagonal, and in (c) jagged lines 
indicate the heights successively take every integer value between the heights on each end of 
the jagged lines. 
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x l as an independent variable (denoted by z, say) so we can restrict our 
attention to the interval 

lYl < I z] ~< 1 (1.5.5) 

Note  in general, for given values of  y and x, z is a discrete variable which 
can assume the values 

xty ~, / = 1 ,  2 ..... r -  2 (1.5.6) 

where n is any integer. 
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From the product  definition of the E function we easily calculate the 
values of  N t, Qt, and R (for the latter two we have to consider separately the 
cases y < x  2 and y >xZ) .  For the disordered ground state S t to be a 
candidate, equality between Nl, Nt_I ,  and Qt is required (recall Fig. 3). 
F rom the calculations of  N t and QI we see this is only possible in the portion 
of Regime I I Ia  corresponding to Regime I and IV when l = r/2 (r even). 

Compar i son  of the values of  N l, Qt, R, and S l thus obtained shows N t 
is a ground state, provided y / x  < ]z I < 1, which f rom (1.5.6) is equivalent to 
requiring for some l = 1, 2,..., r -  2 

0 < n + lct/r 

where for each regime ~ is defined by 
equation has each l =  1,..., ( r - 2 )  as 
intervals 

< 1--r (1.5.7) 

(1.4.11), and n is any integer. This 
solutions, excluding those l in the 

1, - -  (1.5.8) 

where [ ] denotes here (and will do so throughout)  the integer part  function. 
In Regimes I and IV, when r is even, the configuration St~ 2 is also a ground 
state. 

In Regime II  with s = 1, Regime II I  with s = r - 1, Regime IV with s = 
(r - 1)/2 and in Regimes VII I  and X the inequality (1.5.7) is not satisfiable 
(all these cases occur when /~ = r - 1 ) .  We find the ground states are Q~ 
(l = 2 ..... r - 2) for Regimes VIII  and X, and R in the remaining regimes. 

The ground states are summarized in Table I. 

1.6. Pa for the Large but Finite Lattice 

We want to evaluate the Pa,  that is the probabil i ty the center height l 1 

has height a. The lattice f is taken to be planar and finite. Suppose for 
definiteness the center site lies on the X sublattice (recall Fig. 2). As noted in 
A, the Pa will depend on the particular ground state, so that  the number  of  
distinctive ground states will equal the number  of  distinctive Pa is a given 
regime. The ground states can be naturally divided into two classes 
according to whether the even or odd heights lie on the X sublattice (which 
we call even and odd ground states, respectively).If  the ground state is even 
(odd) we clearly have 

P~ = 0, unless a is even (odd) (1.6.1) 

In calculating the P~, the ground state is determined by fixing the 
values of  the heights on the outer two sites of  each end of  each row and 
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Total ground 
Regime N t ~ Ql R S l states ~ 

I, r even 2s - 2 0 0 1 4s -- 2 
I, r odd 2s - 1 0 0 0 4s - 2 
II, s 4- 1 s -  1 0 0 0 2 s - 2  
II, s = 1 0 0 1 0 2r - 4 
III, s 4- ( r -  1) r - s - 1  0 0 0 2 ( r - s -  1) 
III, s = r -  1 0 0 1 0 2 r - 4  
IV, reven r - 2 s - 2  0 0 1 2 ( r - 2 s - 1 )  
IV, r odd, s ~ (r -1 ) /2  r -  2s - 1  0 0 0 2 ( r - 2 s - l )  
IV, s =  ( r -  1)/2 0 0 1 0 2 r - 4  
VIII 0 r - 3 0 0 4 r -  12 
X 0 r - 3  0 0 4 r -  12 

a The entry under the headings Nt, Ql, and S t gives the total number of distinct ground states 
of that type, excluding those obtained from translations. 

0 The "total ground states" column gives the total number of ground states for the regime 
including those obtained from translations. 

co lumn.  I f  the b o u n d a r y  heights  co r r e spond  exac t ly  to those  o f  a par t icu la r  

g round  state,  then the Pa cor responds  to tha t  g round  state. I f  the b o u n d a r y  

heights  do not  co r r e spond  to a pa r t i cu la r  g round  state, then the Pa will 

co r r e spond  to the g round  state which  has  the greates t  n u m b e r  o f  sites wi th  

heights  at the g round  state value.  F o r  example ,  in R e g i m e  IV with r = 5, we 

see f rom Sec t ion  1.5 tha t  the g round  states are Z 1 and L 3. I f  we choose  as 

the b o u n d a r y  heights  2 and 3, then the Pa wou ld  co r r e spond  to L1 (see 

Fig.  4). 

As  in A,  we ca lcu la te  the Pa  using the corner  t ransfer  ma t r ix  technique.  

This  is done  in the Append ix ,  but  the m e t h o d  fails for the unphys ica l  

Reg imes  VI I I  and X,  so we shall  f rom now on res t r ic t  a t ten t ion  to Reg imes  I 

to IV. It suffices to ca lcu la te  the P~ in R e g i m e  I I I o ,  with x given by (1.4.4), 

y g iven by (1.4.7),  and ,u res t r ic ted  to the va lues  (1.4.11).  

Def ine  the func t ion  e(k, l, m) by 

c(l, l - -  1, l) = [l~tlr l 

c(l, l + 1, l) = --[lla/r] (1.6.2) 

c ( l - 1 ,  l , l + 1 ) = c ( l + 1 ,  l , l - 1 ) - - 1 / 2  

We then  find in all cases  except  ~ = r - 1 

Pa = S - 1 E (  xa, Y) Dm(a, b, c' ; x z) (1.6.3) 
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3 
L 

3 - - 2  - - 3  3 - -  3 

I I I I l [ 
3 - - 2  - - 1  - - 2  - - 3  3 - - 2  - - 3  - - 2 - - 3  

I I I I I ] I I I I 
3 - - 2 - - 1  - - 2 - - 1 - - 2  - - 3  3 - - 2 - - 3  - - 4  - - 3 - - 2 - - 3  

I I I I I I l 1 I ] 
3 - - 2  - - 1  - - 2  - - 3  3 - - 2  - - 3  - - 2  - -  3 

I I I 1 I ] 
3 - - 2  - - 3  3 - - 2  - - 3  

I 1 
3 

(a) (b) 

Fig. 4. With the boundary heights fixed at 2 and 3, the remaining heights have been fixed at 
an L 1 ground state in (a) and an L 3 ground state in (b). More sites of that lattice have heights 
corresponding to the L] ground state. 

for a = l , 2  ..... r - - 1  where 

Dm(a , b, r  = ~ qO.) (1.6.4) 
12,...,Ira 

4 ( | )  = C(ll, 12,/3) ~- 2 C ( / 2 ,  1 3 , / 4 )  "]- " ' "  -~- mC(lm, lm+l,/m+2) ( 1 . 6 . 5 )  

r 1 

S =  ~-~ *E(xa, y)  D m ( a , b , c ' ; x  2) (1.6.6) 
a = l  

Here I =  {11, 12 ..... In+2) is a set of  integer heights satisfying the restrict ions 

l<.lj<.r--1, I / j + ~ - - / j I  = 1 (1.6.7) 

for j / >  1. The summat ion  in (1.6.4) is over all al lowed values of  12 ..... lm, 
Ii, lm+l, Im+z being fixed at the values 

l I = a ,  Ira+ 1 =b ,  lm+2=C' (1.6.8) 

Thus a, b, c' must lie in the range 1, 2,..., r -  1 and must  satisfy 

I b - c ' l  = 1, m + a - b  = even integer (1.6.9) 

The heights l 1,..., lm+ z correspond to the heights of  sites on the center row of  
f ,  start ing at the center site 1 and moving right to the boundary .  Thus 
lm+ ~, Ira+ 2 i.e., b, c' are the fixed boundary  heights. In (1.6.6) the asterisk 
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indicates the sum is restricted to either all even or all odd integers from 1 to 
r -  1 (corresponding to the even and odd ground states, respectively). 

The case p = r -  1 requires separate treatment. Instead of  considering 
Regime I I I  o we consider the region 

1 < IWI < ly /x2 l  1/2, y = X  r (1.6.10) 

which when x, y > 0 is Regime II with s = 1. Let us denote this region by 
Regime II o. The transformation (1.4.9) maps the weights (1.4.2) defined in 
Regime II o into Regime III  G with ~ = r - 1. Thus, in an obvious notation 

P ~ " O ( x , y , r - -  1 ) = P ~ ~  1), y " - ' = x  r (1.6.11) 

We find in the Appendix 

P~G(x, y, 1) = T -  luaD m(a, b, c' ; x a r) 

where 

(1.6.12) 

u a = x(~2-r~)/4E(x a, y)  

r--1 
T =  ~ * u a D m ( a , b , c ' ; x  2 r) 

a--I 

(1.6.13) 

(1.6.14) 

The function O m is defined by (1.6.4) with ~ = 1, and the asterisk in (1.6.14) 
has the same meaning as in (1.6.6). 

2. E V A L U A T I O N  OF THE P R O B A B I L I T I E S  Pa 

2.1.  Comments  on the Method  

The expression (1.6.3) for the Pa in terms of  the m-fold s u m  D m is a 
generalization of  the corresponding sums in A (and of  course includes those 
sums). In A a generalization of  I. Schur's proof  of  the Rogers -Ramanujan  
identities (4) was used to transform the Pa in terms of  the Gaussian 
polynomials. This form was then found suitable for taking the limit m-~ oo. 
We again find a similar approach suffices. 

In Regime II of A (Regime II of  this paper with s = 1) this limit was 
not easy to obtain: it was necessary to use the theory of  well-poised 
hypergeometric series. This will also be the case here in Regime III  when 
s = r - 1 ,  and in Reg imeIV when s = ( r - 1 ) / 2 .  However from (1.4.11) 
these regimes are simply related to Regime II when s = 1, so we use the 
results obtained in A for this region. 

822/38/3-4-2 



450 

2.2. 

Forrester and Baxter 

Gaussian Polynomials 

The Gaussian polynomials are defined as 

[Nil H 1-qN-M+j = O ~ M ~ N  
j=l 1 - - q J  ' (2.2.1) 

= 0 otherwise 

We will require the two recurrences (p. 35 of Ref. 7) 

[N]_ [N I] (2.2.2) 
[N I ] (2.2.3) 

the symmetry property 

and the limiting behavior (for I ql< 1) 

lira [ _ ~ ]  = (Q(q))-i  (2.2.5) N,M--*oO 
where 

Q(q) = 1~I ( 1 - q ' )  (2.2.6) 
n = l  

2.3. The Pa in Terms of the Gaussian Polynomials 

Let us write the function Dm(a, b, c; q) simply as Dm(a, b, c). Here we 
express the functions Dm(a, b, b + i) and Dm(a, b, b - 1) in terms of the 
Gaussian polynomials. From (1.6.2)-(1.6.5) the function D m can be totally 
defined by (a) the recurrences, 

Dm(a, b, b + 1) = qm[(b+ l)~'/rl Dm_l(a, b + 1, b) + qm/Z D m _ l ( a ,  b --  l ,b )  

(2.3.1) 

Dm(a, b, b - 1) = qm/:Dm_l(a, b + 1, b) + q-m[(b-1)u/r]D m l(a, b - 1, b) 

(2.3.2) 
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(b) the boundary  conditions, 

Din(a, b - 1, b) = 0 when b = 1 (2.3.3) 

Din(a, b + 1, b) = 0 when b = r - 1 (2.3.4) 

(c) the initial conditions 

Do(a, b, b + 1) = D 0 ( a ,  b, b - 1) = 3a, b (2.3.5) 

To investigate the recurrences (2.3.1) and (2.3.2) we must consider values of  
the function [bp/r], 1 ~ b ~< r - 1. Since 1 ~</a ~< r -- 1 this function is zero 
when b = 1 at least. The function then increases in integer steps with the 
largest assumed value being/ ,  - 1. Divide the b values into sets I k such that  

I k = { b : [ b p / r ] = k , l ~ b < , r - l } ,  k =  0, 1 , . . . g -  1 (2.3.6) 

Note since/~ < r, each I k is nonempty.  Denote the smallest element of  the set 
I k by e k and the largest element by e~,. We can then classify the values of the 
functions [(b + 1)v/r]  and [(b - 1)p/r] .  We have 

L k =- {b: [(b + 1)/l/r] = k, 1 ~< b ~ r - 2} = (IkU{e'k_l}) -- {e~} (2.3.7) 

Mk=-- {b: [ ( b -  1)/~/r] = k ,  2 <, b ~ r -  1} = ( I k U { e k + , }  ) -  {ek} (2.3.8) 

Our strategy is to consider the function D m as lying in different 
domains,  according to the value of [(b + 1)p/r]  and [ ( b -  1)fl/r]. We say 
the function D m ( a , b , b  + 1) lies in domain k if b E L  k , while we say 
Din(a, b, b -  1) lies in domain k if b E M k. In both cases we indicate the 
domain by writing Dr~ = D ~  ). 

Then we can write the recurrences (2.3.1) and (2.3.2) as the 2/z 
recurrences 

~m/Zrl(k) [.."t b 1, b) D(mk)(a, b, b + 1) = qkmD~_~(a, b + 1, b) + , t  " - 'm- l~ ,  -- 

b C L  k - { e ~  ~}, k = 0 , 1 , . . . , p - 1  (2.3.9) 

D ~ ) ( a , b , b  '~ ,m/2r~(k) C,, b +  l , b ) + "  kmn(k) C,, b 1, b) - -  1 )  ~ t /  ~ t J r n _ l \ ~  , ~ ~ j m _ l k ~  - -  

b C M k - - { e k + l } ,  k = 0, 1,...,/1-- 1 (2.3.10) 

D(k + l)r~ ~, l ) _ q(k + l)m D~)  m ~ , ~ k , e ' k +  -- _ l ( a , e ' k + l , e ~ )  

A v ~ r n / 2 1 ~ ( k )  { 0  t 1, e~) (2.3.11) 
a t J m _  1 \ ~ ,  e k - -  

D{k)~a e -- 1) = ..,m/2 r)(k + ~)(,., 
m \  , k + l , e k + l  '.'1 ~,n-~  v~,ek+l + l,  ek+l) 

+ q -kmDCk+l)ram-1 ~ , ek+l  -- 1, ee+l) (2.3.12) 
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where in the last two recurrences k - -0 ,  1 , . . . , /z-2 (thus if ~ =  1 these 
recurrences are not present) and we take {e~ 1} and {ek+l} to be null if 
k = 0 ,  / t - 1 ,  respectively. The recurrence (2.3.11) can be simplified if we 
substitute b = e;, in (2.3.10), multiply both sides of the equation by qkm+m/2, 
and then substitute in (2.3.11). This gives in place of (2.3.11) 

D~)(a,e'k,e'k - 1) =''-km-m/21"l(k+l)t'~~.t L"m k ~, ~k'~t e'k + 1) (2.3.13) 

Similarly, replace k by k +  1 in recurrence (2.3.9), substitute b = ek+ 1, 
multiply both sides of the equation by q-km-m/2, and then substitute in 
(2.3.12). This gives in place of (2.3.12) 

D(k)(am ", , ek+ 1 , ek+ 1 -- 1) = q - k m - m / 2 D  re(k+ 1)(a ,  ek+ 1 , ek+  1 + 1) (2.3.14) 

The equations (2.3.13) and (2.3.14) are regarded as boundary 
conditions between the domains. Note that a sufficient condition for both 
these equations to hold is 

1 ~ -- "-km-rn/2D(k+l)(cl b, b + 1) (2.3.15) D~)(a ,b ,  b -  J - - ~  m ~ ,  

for all integers b. We will in fact establish this more general property. Hence 
the D~ ) (and thus the Din) are totally defined by the recurrences (2.3.9) and 
(2.3.10), the boundary conditions (2.3.3), (2.3.4), and (2.3.15), and the 
initial condition (2.3.5). 

By analogy with the form of the solutions obtained in A we sought 
solutions of the form 

Zq~2+'~(a'b'b+l)~+~(a'b'b+l)+m~(a'b'b+l) [ m ] m + a - b  r2 

2 

where the 7, a, fl, and r were to be determined. We thus derived the following 
result. 

Theorem 2.3.1. Form1>0,  l ~ < a , b < r , m + a - b a n e v e n i n t e g e r  

D~)(a, b, b + 1) = qa(a-l)/4+m*(a'b'b+l)(g(k)(a, b, b + 1) - g(k)(--a, b, b + 1)) 

where 
r(a,  b, b + 1) = +k/2 

qr(r ~t)2t2+cz(a,b,b+l)A.+B(a,b,bSzl) g(k)(a,b,b + 1) = ~. 
.A= --oo 

(2.3.17a) 

(2.3.17b) 

[ m 1 m + a - b  r~. 
2 

(2.3.17c) 
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a(a,b, b i  1 )=r( (b+b+ 1 - 1 ) / 2 - k ) - a ( r - # )  

fl(a, b, b + 1) = b(b - 1)/4 - (a + k - 1)b/2 + ak/2 

fl(a, b, b - 1) = b(b - 1)/4 - (a + k)b/2 + a(k + 1)/2 

(2.3.17d) 

(2.3.17e) 

(2.3.17f) 

Proof. From the discussion above if suffices to verify (2.3.9), (2.3.10), 
(2.3.15), (2.3.3), (2.3.4), and (2.3.5). 

To verify (2.3.9) substitute for D~ ) (2.3.17) and then use (2.2.3) in the 
form 

i m l 1 m + a - b  r 2 - 1  
2 

[ m + a - b  
2 

r2 
l--q(1/2)(m+a-b)-ret [ m+a--b2m--I r 2 ] ( 2 " 3 " 1 8 )  

to replace the Gaussian polynomial in the function D~)_t(a, b + 1, b). This 
shows (2.3.9) is true for all b. 

Similarly (2.3.10) follows immediately, if we use (2.2.2) in the form 

m--1 ] 

m + a - b  - r 2 - 1  
2 

= q(a b m)/2-rYt ([ m ] [  m l 
m + a - -  b r2 _m + a -  b r2 

2 2 
(2.3.19) 

to replace the Gaussian polynomial in the function D(k)(am ~ , b + 1, b). 
To verify (2.3.15) we merely substitute (2.3.18). The result follows 

without any manipulation. 
To check (2.3.3) consider F(k)(a, 0, 1) as defined by (2.3.19). Replacing 

2 by --2, then using the property of the Gaussian polynomial (2.2.4) shows 

g(k)(a, O, 1) = g(k)(--a, O, 1) (2.3.20) 

Hence from (2.3.17), (2.3.3) is satisfied. For the boundary condition (2.3.4) 
consider F(k)(a, r, r-- 1) as defined by (2.3.17). Replacing 2 by --(2 + 1), 
then using (2.2.4) shows 

g(k)(a, r, r -- 1) = g(k)(--a, r, r -- 1) (2.3.21) 

which from (2.3.17)establishes (2.3.14). 
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It remains to verify (2.3.5). When m = 0  the only nonzero term in 
(2.3.17) is the ~. = 0 term, since from (2.2.1) 

Hence, since 1 ~< a, b ~ r -  1 we have from (2.3.17) when m = 0 

g(k)(--a, b, b + 1) = 0 (2.3.23) 

g(k)(a, b, b + 1) : q ~(~-~)/4 6~,~ (2.3.24) 

Substituting (2.3.23) and (2.3.24) in (2.3.17) we establish (2.3.5) and thus 
the theorem. I 

2.4. The Large m Limit 

We require the m ~  ~ limit of  the Pa (1.6.3). This is equivalent to 
taking the m ~  oo limit of  q~km/2D~)(a,b,b + 1) provided this limit is 
nonzero. Let us consider this limit first. Define the function 

F(a, b -- k; q~/Z) = qa(a-1)/4[q a(e-k)/Z E(__qr( t , -k)+(r-a)(e- . )  ' qZr(r . ) )  

_ q~(b-k)/ZE(__qr~O-k)+(r+ a)(r-,), qZr(r ,))] (2.4.1) 

and denote by " l imm_~" the limit m ~ m restricted to those values of m in 
Dm(a, b, b J: 1) with the same parity as a -  b. Then we have the following 
result. 

Theorem 2.4.1. Let l~<a~<r-1 ,  l~<b~<r-2.  Then 

~-km/2 n(k)l~ b, b + 1) lim q "-'m ~", 
m ~  

= (Q(q))-Xqb(b 1)/4-(k-1)b/ZF(a, b - k; q,/2) (2.4.2) 

where 
k =  [p(b + 1)/r] (2.4.3) 

and 
lim "~krn/Z l-)(k)(" b + 1, b) 

m ~ o ~  

= [Q(q)] lqb(b+~)/4-k(b+l)/ZF(a,b--k;q ~/2) (2.4.4) 

where 
k = [pb/r] (2.4.5) 

The function Q(q) is defined by (2.2.6). 

ProoL Firstly, note the values of k follows from the definition of  the 
D ~  ) given in Section 2.3. The theorem follows immediately after taking the 
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limit inside the summation (2.3.19), then using the formula for the limiting 
form of the Gaussian polynomials (2.2.5). The resulting expression is iden- 
tified with (2.4.1) using the series expansion of the E function (1.4.1). II 

Next we consider the conditions under which the function F vanishes. 
This occurs when 

(b - k )  = I(r - p)//_t (2.4.6) 

for some integer I. To see this substitute (2.4.6) for ( b - -k )  in the second 
term of (2.4.1). Then in the series definition of the E function (1.4.1)replace 
2 by it + m. The second term is then seen to be equal to the first in (2.4.1) 
and thus F vanishes. 

Note from (2.4.3) the quantity b - k  in D ~ ) ( a ,  b, b + 1) is monotone, 
taking the value 0 to r - p -  1 inclusive. Thus is this case the condition 
(2.4.6) is only satisfied when 

b - k = 0 (2.4.7) 

From (2.4.5), b k in r)(k)c ~ b + 1, b) is again monotone, taking the values 
0 to r -  p inclusive. Hence is this case the condition (2.4.6) is satisfied when 

b -  k =  0 or b -  k =  r - p  (2.4.8) 

To take the m ~  c~ limit of the Pa under the conditions (2.4.7) and 
(2.4.8) we expand qVkm/ZDm(k)(a,b,b• 1) in powers of q-m/2 .  This is done 
via the special case of Lemma 2.4.8 of A [choose B =  ( a - b ) / 2 - r ~ ,  
b = b - rI] 

lim q-m/2 
m o o o  

[ m ]_ 
m + a - b  

2 r2 

= q -b /2 (1  _ q(O--rt))(q--a/2+r(a+l) 

m 

m + a + b  r ( 2 + /  
2 

--  q a / 2 + l - r ~ ) / ( 1  --  q )  Q ( q )  (2.4.9) 

where l = 0 or 1 according to (b - k) equaling 0 or r - /a ,  respectively. Using 
(2.4.9) in (2.3.17) we readily derive the following result. 

Theorem 2.4.2. I f  b - k - - O ,  

km/21-}(k)(/7 h lim q - m / 2 ( q  ~ m  ~ . . . .  b + 1)) 
m ~ o o  

= (qb(b 1)/4-kb/2(1 _ qb)/(1 _ q)  Q ( q ) ) F ( a ,  1; ql /2)  (2.4.10) 

and 

lim q m/Z(qkm/2D~)(a ,  b + 1, b ) )  
m ~ o o  

= (qb(b l)/4-k(b+l)/2 1/2(1 _ q b + l ) / ( 1  _ q)  Q ( q ) ) F ( a ,  1; ql/2)  (2.4.11) 
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I f b - k = r - ~ ,  

lim ~-m/2rr~km/2D(k)fa\~l m k , b + 1, b))  
m --+oo 

_= (qb(b-1)/4-kta+l)/2 1/2(1 _ q b + l - r ) / ( 1  __ q) Q ( q ) ) r ( a ,  r -- I.t --  1; ql/2) 

(2.4.12) 

Theorems 2.4.1 and 2.4.2 provide the limiting value of the Pa for all 
allowed values of  ~t as given by (1.4.11), except/~ = ( r - - 1 ) ,  in which case 
F(a ,  0; q) = F(a ,  1; q) = 0. From (1.4.11) the case/~ = r - 1 corresponds to 
Regime II  when s = 1, Regime II I  when s = r -  1 and Regime IV when s = 
( r - -  1)/2. As noted in Section 2.1 we can use the results obtained in A for 
Regime II  when s = 1 to write down the Pa in these cases. 

Thus substituting Theorems 2.4.1 and 2.4.2 in (1.6.3), provided 
/~ 4= ( r -  1) we have computed P~ in the m-~ oo limit. 

T h e o r e m  2.4.3.  Consider the portion of Regime I I Ia  corresponding 
to Regimes I, II, III ,  and IV, excluding the case r = r - 1 .  Suppose we 
impose the boundary  condition of  heights b, b + 1 (1 ~< b ~ r -  2) on the 
second end and end sites, respectively, of  each row. Define k by (2.4.3). 
Then if b -- k 4 : 0  

/rfl, P ~ = E ( x ~ , y ) F ( a , b - k ; x )  E ( x ~ , y ) F ( a , b - k ; x )  (2.4.13) 

while if b - k = 0  /rf: 
Pa=E(x~,y)f(a, 1;x E(x~,y)f(a, 1;x) (2.4.14) 

Suppose instead we impose the boundary  condition of heights b + 1, b 
(1 ~< b ~ r - 2) on the second end and end sites, respectively, of  each row, 
and now define k by (2.4.5). Then if b - k 4 : 0 ,  r - #  the Pa is given by 
(2.4.13) and if b - k = 0  by (2.4.14). I f b - k = r - p  we have 

P a = E ( x a ,  y )  F ( a , r - - t l  - 1;x)  E ( x a ,  y ) F ( a , r - ~  - 1;x)  (2.4.15) 

It remains to consider the case ~ = r - 1 ,  which from (1.6.11) and 
(1.6.12) is equivalent to considering the limiting behavior  of  the sum D m 
with ~ = 1 and Iql > 1. This limit has been calculated in A (Theorem 2.6.8). 
Hence substituting the results of  A in (1.6.12) we have evaluated the Pa in 
Regime I Ia ,  which from (1.6.11) gives the P~ in Regime I I I  6 with/~ = r -  1. 
We will present the results for Regime II6.  
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Theorem 2.4.4. Define the function 

q~a(z) = E(qa, qr) E(--Z, q)(Q(qr))3 (2.4.16) 
E(-z,  qr) E(__qaz, qr)(Q(q))3 

This is an analytic function in the domain 0 < [z I< oo and so has the 
Laurent expansion 

~)a(Z) ~_ ~ t] a,k Zk (2.4.17) 
k - - - - o o  

Define 0a,k by 

T/a, k = q[rk(k + 1)/2-akl/(r-2) Oa,k (2.4.18) 

Consider Regime II c given by (1.6.10). Then in terms of the Oa,k with 
q = X r-2 

Pa= E(x a, y)Oa,(a+j)/2/i~ll* E( xa, Y)~a,(a+j)/2 (2.4.19) 

If the boundary condition of the second end and end site of each row is 
heights b and b + 1, respectively, then the parameter j in (2.4.19) has the 
values 

(m - b) mod(2r - 4) (2.4.20) 

while if they are b + 1, b then j has the values 

- ( m  + b + 1) mod(2r - 4) (2.4.21) 

(thus for the limit m ~  ~ to be well defined we must, in the limiting 
procedure, hold either (2.4.20) or (2.4.21) fixed). Furthermore we requirej  to 
have the same parity as a. 

2.5. Number of Ground States from the Pa 

We noted in Section 1.6 that the number of distinctive ground states will 
equal the number of distinctive Pa in the given regime. Let us now check that 
assertion. First suppose the center height a is even, so we are considering 
even ground states. Consider the case/~ 4 = ( r -  1). From Theorem 2.4.3 the 
number of distinct Pa for boundary heights b + 1, b is equal to the number of 
distinct values of b - k, minus 1, where k is given by (2.4.3). For boundary 
heights b, b + 1 the number of distinct Pa is equal to the number of distinct 
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values of  b - k, minus 2, where k is given by (2.4.5). In the former case there 
are r - p  distinct values, while in the latter there are r - ~ t  + 1. Thus in both 
cases the number of  even ground states is r p 1. Similarly there are 
r - ~  - 1 odd ground states, giving a total number of  2 ( r - p -  1) distinctive 
ground states. By writing down the corresponding value of  p in terms of s 
from (1.4.11) for Regimes I - IV,  p 4= ( r -  1) we see this is indeed the number 
of  ground states given by Table I. 

When p = r - 1, from Theorem 2.4.4 we see the number of  even ground 
states is given by the number of  distinct values of  the parameter j,  which is 
r - 2. Similarly there are r - 2 odd ground states, giving the total number of  
distinctive ground states as 2 r - 4 .  This is consistent with the number of  
ground states given in Table I for Regime II with s = 1, Regime I I I  with 
s = r - 1  and Regime IV with s = ( r - - 1 ) / 2  all of  which correspond to 
Regime III  6 with/x = r -- 1. 

2.6. Normalization Constant 

We have now calculated the large-m limits of  the D m in (1.6.3). We still 
need to evaluate the normalizations S and T as defined by (1.6.6) and 
(1.6.14). In A we showed that S could be expressed as a single product of 
two E functions, and T as a Q function. This is again the case here. Indeed 
the summation formulas proved in A (Theorems 3.2.1 and 3.2.3) contain the 
required identities. 

In Theorem 3.2.1 of  A choose m = 2/~, z = x  k-b and ~ = - 1 .  We then 
have the identity 

S(x, y )= ~ *  Xa("-l)/2-~b-~)a E(xa, y) 
--r<a<r 

X E ( - - x  2(r-n)(r a)+2r(b-k) x4r(r-~t)) 

= 1/2(E(--x k-b, x) E(x ~b-k), y/x) • E(x b-k, x) E(--x (b k), y/x)) 

= X-(b-k)(b-k+ 1)/2 E(--X, x 4) E(x b-k, y/x) (2.6.1) 

where to obtain the last line from the second last we have used the simple 
identities 

E(x u, x) = 0 (2.6.2a) 

E(--x -u, x) = 2x u~+ 1)/2E(--x, x 4) (2.6.2b) 

valid for all integers u. The identity (2.6.1) is true for all integers b and k 
and all real numbers y, x such that 

y " = X  r , 1 ~ < / ~ < r - -  1 (2.6.3) 
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Noting (2.6.4) is consistent with (1.4.7), and by grouping together the a and 
- a  terms in the sum S(x ,  y )  using the identity 

E(x ~ y) = - x  aE(x ~ y) (2.6.4) 

we see S(x ,  y)  is the required normalization constant in Theorem 2.4.3. We 
have thus calculated the normalization constant in all cases except/a = r - 1. 

Recall the case r  corresponds to Regime II with s =  1, 
Regime III  with s = r - 1  and Regime IV with s = ( r - 1 ) / 2 .  In Regime II 
with s = 1, from (2.4.19), (1.6.11), and (1.4.12) we require the sum 

r - - I  

T1 ~ '  * E ( x  ~, x r) - ~-z = rla,(a+j)/2(x ) (2.6.5) 
a = l  

In Regime III  with s = r -  1 we require 

r - -1  

T2 = ~ , E ( x ~ ( r - l ) , x r / ( r  l))"Oa,(ct + j ) / 2 ~  " ~ [ ' ' ( r - 2 ) / ( r  1)~) (2.6.6) 
a = l  

while in Regime IV with s = (r -- 1)/2 (r odd) we want 

r - 1  
T3 = Z * E ( ( _ _ x l / ( r - l ) ) a , _ _ x r / ( r  1))Oa,(a+j)/2(__x(r 2) / ( r  1)) 

a = l  
(2.6.7) 

The values of  x in these sums is given by (1.4.4) and (1.4.5) or (1.4.4) and 
(1.4.6) depending on the regime. Further, we have written 0~,k = Oa,k(q). 

In A (Theorem 3.2.2) we proved 

r - -1  
(xr-- 2 ~. * E ( x  a, x r) tla,(a+j)/2t ) = Q(x r-2) (2.6.8) 

a = l  

where the function Q is defined by (2.2.6). This evaluates T 1 immediately, T 2 
by replacing x with x 1/(r- l) and T 3 by replacing x with --x  1/(~- 1) (and noting 
r is odd). 

2.7.  Final Results 

We can now write down the expression for the pr(r ,  s, y)  (T--= I - IV, 
where we are using the notation of  Section 1.4) using their relationship to the 
Pa in Regime IIIo given by (1.4.11), 

In Regimes II and III ,  where 0 < p < 1, we can define e = ~rK'/K, ~ > O, 
so from (1.2.4), (1.4.4), and (1.4.5) 

p = e -  ~, x = e -4~ t z s / r~ ,  y = e - 4 ' t z / ~  (2.7.1) 
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In Regimes I and IV, where - 1  < p < 0 (/td thus K '  = L '  + iK)  we can take 
e = 7rL' /K,  e > 0, so from (1.2.4), (1.4.4), and (1.4.6) 

p = - - e -  ~, x = e-2Z~2s/r~ y = --e ~2/8 (2.7.2) 

With the notation introduced in (2.7.1) and (2.7.2) we write the arguments  of  
the --aPING in (1.4.11) in terms of  the variable y and the parameters  r and s. 
Thus 

P~(r,  s, y )  = p~H~(_  l yl 1-(2s/r>, y, r --  2s) 

I I  Pa (r, s, y )  = e ~ , ~ ( y l  (s/r), y ,  r - -  s)  
(2.7.3) 

pl I I ( r ,  s, y)  = e~i i%yS/r ,  y ,  s)  

IV P ,  (r, s, y)  = eI 'I~(I y l 2'/r, y,  2s) 

In all cases except lz = r - 1 [i.e., Regime II  s = 1, Regime I I I s  = r - 1 
and Regime IV s =  ( r - 1 ) / 2 ]  p~iia is given by Theorem 2.4.3 with the 
normalizat ion constant given by (2.6.1). In the case/z = r -  1 we have from 
(1.6.11), Theorem 2.4.4, (2.6.8), and (2.7.3) 

P I q r  1, y)  = ~l l I /  r ~  tr, r - l , y )  

= E ( S / ~ ,  y )  ~a,(a+j)/2(y(r-2)/r)/Q(y (r-2)/r) (2.7.4) 

pIaV(r , (r --  1)/2, y)  

= E(__(ly[1/r)a, y )  O~,(~+j)/2(__lyl(r-2)/r)/Q(__lyl(r 2)/r) (2.7.5) 

3. CRITICAL BEHAVIOR 

3.1. The Pa in Terms of the Original Variables 

In Section 1.5 we saw how the different regimes are characterized by 
different numbers  and types of  ground states. For  given values of  v and t / in  
the weights (1.2.2) the regimes depend on the sign of  the variable p (1.2.4). 
When p = 0 the model is critical (the actual regimes which are coexisting at 
this point can be determined from Figure 5). Thus p measures the deviation 
from criticality so it is desirable to obtain expansions of  the Pa in terms of 
this variable. To do this we require the conjugate modulus form of the 
expressions (2.7.3), (2.7.4), and (2.7.5) which converts the variable y therein 
to p [recall we use a conjugate modulus identity in Section 1.4 to write the 
weights (1.2.2) which were functions o f p  in terms of y]. 

We will express our results in terms of the Jacobian 0 functions (8) 
defined in terms of  the complex variable u, and parameter  q(]q[ < 1) by 
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01(u, q2)=lql 1/4 ~ '  (__l)nqn("+l) e2"('+'/2' 
n =  - c ~  

(3.1.1) 

04(u, q2)= ~ (-1)"q"2e 2'"m (3.1.2) 
n =  coo 

02(u ' q2) = 0,(7t/2 + u, q2), 03(u ' q2) = 04(~/2 + u, q2) (3.1.3) 

As in A we have taken q2 rather than q as the home since we encounter 01 
functions with q2 negative. Since the definition (3.1.1) is a function of q2 this 
is unambiguous. However 04 is a function of q rather than q2. This will not 
cause any problems as we will only encounter 04 functions with q positive. 

Also it is convenient to define 

Oi(u, qZ)=�89 Iql-1/4Oi(u, qZ), i= 1,2 (3.1.4) 

The conjugate modulus identities we require are 

01(u,e ~)=p(u,e)E(e 4~u/e,e 4~2/~) 

04(u, e -e) =p(u, g)E(--e 4=u/~, e-4=2/~) 

01(u/2, - e  ~/4) = 21/2 p(u, e) E(e-4=u/~, _e-4=2/e) 

02(u/2,--e -~/4) = 21/2p(u, e)E(--e 4=,/~, --e 4=2/~) 

where 

p(u, C) = (27~/~) 1/2 exp[(2zcu -- 2u 2 -- 7rz/2)/e ] 

(see A for references). 

(3.1.5a) 

(3.1.5b) 

(3.1.5c) 

(3.1.5d) 

(3.1.5e) 

We have already applied the conjugate modulus transformation to the 
function O~,j(exp[-2~2(r-2)/re]) which occurs in (2.7.4) [Eqs. (3.37)- 
(3.3.15) of A]. Define 

  ,frr211   = - -  exp - - ~ - +  24 ( r - -2 )  

• O~ j(exp [--27r 2(r - 2)/re ]) 

t ~  pl/(r-2) =e-e/(r-2) 

F~(u) = Q3(t) t71(zta/r, t) O4(ru, t ~) 
Qz(tr) 04(u, t) 04(u + eta~r, t) 

(r - 2)7t 2 (r/2 -- a_)2 zc2_] 
6rg q 2r2e ] 

(3.1.6) 

(3.1.7) 

(3.1.8) 

Let Fa have the Fourier expansion 

F a ( u ) =  ).2 f~,, e2i"u (3.1.9) 
n =  - - o o  
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Then 2o, J, and thus from (3.1.6) O a , j ,  is given by 

2o,j 4 ~-3 [ (j 12 a ) / ( r - - 2 ) J  " r  Jo,, . . . . .  ~. exp --2gi + t -n2/(zr-4)f  (3.1.10) 
F n = 0  

The same approach suffices to convert the function 
0od(--exp[-z~Z(r-2)/re]) occurring in (2.7.5). Define 

)~a,j = - -  exp 124(r L 2) 24er + 2-~Yr 2 

Go(u ) _ ~ O, Qra/2r, - t )  tgz(ur, - t  ~) Q3(-t) 

03_,(u + 7ra/2r, - t )  0"2(u,-t) Q2(-F)  
(3.1.12) 

G o have the Fourier expansion 

a o ( u )  = 

and denote 

gm,a e2iU(m + 1/2) (3.1.13) 
i n =  --cx3 

r 3 

y = ( t  -'/8(r 2)/r)V'  g2m,a(--1)mt -m(2m+l)/(r-2) 
m = 0  

• exp{--7~i(4m + 1)[(r - 1)/2 + j -  a/r]/2(r  -- 2)} (3.1.14) 

The following the same procedure as used in A to derive (3.1.10) we find 

~ a , j  = 

(1)-J/2Y, a even, �89 - 1) even 

i (-1); /2Y,  a even, �89 - 1) odd 

i ( -1) -J /2Y,  a odd, �89 - 1) even 

(--1)J/zY, a odd, � 8 9  odd 

We are now in a position to apply the 

(3.1.15) 

conjugate modulus transfor- 
mations (3.1.5) to the Po. However first note the Po have been defined in 
terms of the boundary conditions, which we know determines the underlying 
ground state. It is more convenient to label the Po explicitly by the 
underlying ground state. Consider the Po in Regime III~ for ~t 4: r -  1 as 
given by Theorem 2.4.3. From Section 2.5 the ground state can be labeled by 
the value of b - k in the function F(a, b - k; x), there being as many distinct 

where t is defined by (3.1.7) and r = 1 if a is even and v = 2 if a is odd. Let 
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values of  b - k as ground states. Let us denote b - k by d. Then form the 
discussion on the ground states contained between equations (1.6.1) and 
(1.6.2) of  the text it follows d labels the allowed ground states in order from 
lowest to highest (recall f rom Section 1.5 that for p ~ r - 1 the ground states 
are of  the type N s or S t which have a natural  ordering according to the value 
of l). 

A reformulation of the results in the case of/.t = r -  1, when the ground 
state is of  type R (recall Section 1.5) has been given by Huse. (3) We want  to 
write 

P ,  = P(~) (3.1.16) - - a , n  

where pts) is the probabil i ty of  finding the height l ; -  a at a given site i in a~tl 

the interior of  the system. To do this consider a unit cell of  the ground state 
R which can be chosen to be the (2r - 4) adjacent sites in a row, numbered 
n = 0, 1,..., ( 2 r - 5 )  with the odd numbered sites on the X sublattice. The 
(r - 2) odd (even) ground states and their corresponding phases may  then be 
numbered by the odd (even) integers 0 ~< J ~< (2r - 5), so that in each ground 
state the height at site J in the unit cell is equal to 1. To rewrite the 
expressions (2.7.4) and (2.7.5) in terms of this labeling system we merely 
replace the j therein by J -  n -- 1 for odd ground states, and by J -  n for 
even ground states, where in both cases n must have the same pari ty as a. 
Denoting the Pa for the odd and even ground states by (odd)pa and (ev.)p~, 
respectively, we clearly have 

( o d d ) p ( J )  ( e v . ) / : ~ ( J -  i) (3.1.17) 
a , n  ~ ~ a , t l  1 

Hence is suffices to write down the (~ a only. 
Applying the t ransformations (3.1.5) to our results (2.7.3), (2.7.4), and 

(2.7.5) and writing them in terms of  the labels d, J, and n defined above we 
have 

pIa(r ,  S; p)  = - -  ( - - l  )a(k  + l )+k(k  + l)/2 R a H(d,  2s; [p],/(2~(~ 2,))) 

x (oz(o, - I p l  r/(r 2,)) O,(7rrd/2s, Iplr/~)) -1 (3.1.18a) 

II I I I  P~ (r, s; p )  = P~ (r, r -- s; p )  (3.1.18b) 

P~II(r, s; p )  = R~H(d ,  r -- s; pl/(4~(r ~))) 

• (04(~/4, p~/4s) O,(zcsd/(r -- s), p~/(~-s))) - i  

(3.1.18c 

(odd)  l I I  
Pa ( ' ,  r -- 1; p )  = 2a,(a+s_,_~)/2 g~(zra/r, p ) /Q(pr / ( r -2 ) )  (3.1.18d 
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P~V(r, s; p )  = R ~ H ( d ,  r - 2s; Ip l '/(2"~- 2~)) 

X [04(7C/4 , I Pl r/2s) 0 1 ( ~ s d / ( r  - -  2s), - I p l  ~/~r -  2,))] - ,  

(3.1.18e) 

(odd) IVl P ,  tr, (r - 1)/2; p)  = Y,,(~+s , ~)/20,,Oza/2r, p ) / Q ( - I P h  r/(r 2))(3.1.180 

where 

R a = 01(Tcas/r , p ) / r  (3.1.19) 

H ( d , v ; q ) = O 3 [ 2 ( d \ - ~ - - 7 - / a ] ; q ] - O 3 [ 2 ( d + ~ ) ' q ] ,  (3.1.20) 

In (3.1.18a) r =  1 i f d  is even and 4 i f d  is odd, and in (3.1.18 0 r '  = 1 i f a  is 
even and 2 i f a  is odd. In (3.1.18c) s - - /=r-  1, and in (3.1.18 0 s4 :  ( r -  1)/2 if 
r is odd. Further we recall f rom (2.7.1) and (2.7.2) that  p is positive in 
Regimes II  and I I I  and negative in Regimes I and IV. 

When s =  1 in the above expression ( s = r - 1  in R e g i m e I I I )  we 
showed in A that at p = 0 

p~ = - - 4  sin2 na (3.1.21) 
r r 

for each regime and further gave the next term in the expansion of the Pa as 
a function o f p  [Eqs. (3.3.22) of  A]. We can calculate similar expansions for 
s v a 1 from the above results. For  Regime IV with s = (r -- 1)/2, r odd, we 
first need to note from (3.1.12) and (3.1.13) that  for 0 ~ m ~< ( r -  3)/4 

12(__l)(r-3)/2e-~ia 
r - 4 r n  1)/4r �9 ~a  

sin 4 ~ r  (r -- 4m -- 1), 

g2m,a i(e i~a(r -4m-1) /2r  __ (__1)(r-1) /2) ,  

a even 

while for 0 ~< m ~< 3(r - 3)/4 and (r - 3)/2 even 

~ra (2m + 1), 2 Ipl 2m/(r-2) e ni(1-2m)/2r sin 

g(1/2) (r-- 3) + 2m,a 

2i  Ip l  2m/(r-2) e -ni(1-2rn)/2r c o s  ~ (2m + ), 
Z g  

and for 0 ~ m ~< 3(r - 5)/4 + 1, (r - 3)/2 odd, a even or odd 

a odd 

(3.1.22) 

a even 

a odd 

(3.1.23) 

_ 2 l p l ( 2 ~ + l ) / ( r  2) e, ia, , /rsi  n z~a ( m +  1) (3.1.24) g(1/2)(r -  1) + 2m,a r 
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We find in each of  the cases s > 1 (s 4= r - 1 in Regime III),  that with 

one exception to be noted below: 

x 

Pa(r , s ;  P)  ~ X~ Ca,~p_b,  + 4 sin2 7~as (3.1.25) 
a . .  r r n = l  

Here x and the Ca, . may depend on r, s, the phase and regime. Also x >~ 1 
and the Ca, ~ have the property 

r 1 

~ *  C a , , = 0 ,  l < < , n ~ x  
a = l  

3.1.26) 

[the asterisk has the same meaning as in (1.6.9)], and the b n are positive. In 
Regime I the largest b n is 

s 2 - 1 (s - r) 2 + s 2 - -  2 
b m a •  d o d d ;  bmax= 8 s ( r - 2 s )  , deven  (3.1.27) 

while in Regime II, Regime III  [s 4= ( r - -  1)] and Regime IV Is 4: ( r - -  1)/2, 
r odd] we have bma x given by 

( r - - s )  2 -  1 s 2 -  1 s 2 -  1 

8s(r - s) ' 8s(r - s) ' 4s(r  - 2s) 
(3.1.28) 

respectively. In Regime IV with s = (r - 1)/2, r odd we have 

bmax 3(r - 3)(r - 5) (3.1.29) 
= 8(r - -  2 )  2 

Hence in these case the Pa diverge at criticality. This is possible, since from 
Section 1.4 we know these case are unphysical (i.e., there are negative 
Boltzmann factors), so the Pa do not have to be positive. The normalization 
condition (1.2.8) implies these divergent terms must cancel when summed 
over a, which is what we observe in (3.1.26). 

The expansion (3.1.25) has the remarkable feature of containing as the 
constant term (i.e., term independent of  p)  

4 sin2 z~sa (3.1.30) 
f f 

which is the obvious generalization of  the critical density (3.1.21) in the 
physical case s = 1. 

Since the Pa are diverging at criticality, it is not possible to define 
exponents of  the order parameters in the usual sense. However, as 

8 2 2 / 3 8 / 3 - 4  3 
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commented above, there is one nonphysical case in which the Pa do not 
diverge. This is in Regime IV with r = 5 and s = 2. From (3.1.15), (3.1.18f), 
(3.1.22), and (3.1.24) we deduce the expansions 

(odd)plV(K ~4 2ga 8 (_l)a/2 (sin 7ra ) (sin ~r__~_) --a ~ , 2 ; P ) " ~ z s i n 2  5 ---5- -]6- 

X [ C O S Z C ~ ]  p '/9 (3.1.31a) 

(odd)l)IV(~ 4 2ha 8 (_1)(~+1)/2 s in--f-  cos - ~ ' 2 ; P ) ~ - - 5  sine 5 - - 5 -  

for a even and a odd, respectively. Thus the critical exponent fl~5) in this case 
is 1/9. 

3.2. Free Energy 

The free energy of the SOS model defined by the weights (1.2.2) can be 
calculated using the inversion relation method. (6) From the symmetries of the 
partition function given in Section 1.4 it suffices to calculate the free energy 
of the regions given in Fig. 5. Indeed if we consider the model as defined in 
terms of the conjugate modulus variables by (1.4.2) it suffices to calculate 
the free energy in Regime III~ ~u 4= r -  1), Regime II o as given by (1.6.10) 
and the regime 

ly/x2] 1/2 < Iw{ <ll /yxEI 1/2, y = x  r (3.2.1) 

which we will denote Regime VIII o. To see first define p' in (1.2.2) by 

p' =p0[h(2r/)] ' exp[zc(v 2 - riE)/2KK '] (3.2.2a) 

p '  = # 0 [ h ( 2 q ) ]  - '  e x p  [Tr(v ~ - q2)/2KL'] ( 3 . 2 . 3 b )  

for p > 0 and p ~ 0, respectively. Then one can check the symmetry 
properties of the weight function W (which we will consider as a function of 
w, x, and y as defined by (1.4.4), (1.4.5), and (1.4.6) 

W(w, x, y) = wl/2W(1/w, y/x,  y) (3.2.3a) 

~---- W(y/X) 1/2 m(wy, x, y) (3.2.3b) 

where the = sign means the partition function given by the equated weights 
are the same [thus the actual weights may differ by a factor of the form 
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K/2 

Re(v) 
- K/2 

K/2 

- K/2 

1] 

- K / 2  

K 
Re (~v) 

3K/2 

P < O  

s = ( r - 1 ) / 2  

.K/2 

2K 

P < O  

s ~  ( r - 1 ) / 2  

P>O 

s ~ l  

11 

-1~/2 

.K/2 

~ ,  Re (v) 

3K/2 

p>O 

s = l  

Fig. 5. Regimes I to X in the domain 0<r/<K/2,  --t/<Re(v)<2K--q. The Pa and 
partition function Z in the portion of the Re(v) -- r/ plane not shown above can be deduced 
from the symmetry relations given in Section 1.4. 

(1.3.1)]. The symmetry  (3.2.3a) maps  Regime III~ to Regimes I and II; 
Regime II  6 to Regime II I  with s = r - 1 and to Regime IV with s = (r -- 1)/2; 
Regime VIII  G to Regime X. The symmetry  (3.2.3b), after one iteration, maps 
Regime III~ to Regime IV '  (we consider this regime explicitly since at p = 0 
it coexists with Regime VIII) .  
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Let us denote x r = ~cr(w, x, y), where T denotes the regime, n the free 
energy per site, and w, x, y are given by (1.4.4) and (1.4.5) for Regimes II, 
III, and VIII and by (1.4.4) and (1.4.6) for Regimes I, IV, and X. Further 
denote R~c r = wl/2Kr(1/w, y /x ,  y). Then from the discussion above we have 
the relations 

K I ~ R K I I I G  

K I I l  ~ KIIIG(y r-1 z/z X r) 

/~IV = KmG(y(r 1)/2 z~ X r) 

K VIII  = /.(TVIIIG 

K IV'  ~ (w2y2/x)  KIIIG(wy 2, X, y)  

K II = R K  I I I  

K I I I =  RKUc(yr-1 = X r) 

~clv = RtclIa(y(r 1)/2 = X r) 

K .X = R K V I I I ~  (3.2.4) 

With p' given by (3.2.2), let us further define the parameters 2, u, and q 
by 

,~ = 2 = ~ / K ' ,  u = ~(~ + v ) / K ' ,  

for p > 0, while for p < 0 define 

2 = ml /L ' ,  u = n(q + v ) /2L ' ,  

q = e 2,~K/K' (3.2.5a) 

q2 = - e  ~/~/L, (3.2.5b) 

Then the definition of the weights (1.2.2) coincides with that of the weights 
given by Eqs. (6.1)-(6.5) of Ref. 6. The free energy in Regimes IIIo, IIo, and 
VIII o can then be written down immediately from equations (6.32)a, b, c, 
respectively, of Ref. 6 (although only the case of q2 positive was explicitly 
considered in these equations, this restriction is not necessary). Define the 
functions Y by 

[1 - (x/w)" ](1 -- w")(x" + x - n y  ") 
Yl(W, x, y)  

,=,z'~ n(1 - y")(1 + x " )  
(3.2.6a) 

Yz(w, x, y) = ~ (1 -- w-"){(x" - - y " ) [ ( x / y ) ' - - ( w / x ? ) " ]  + (1 - x " ) ( w "  - x - n ) }  

n 1 n(1 - y") ( (x /y )"  + x ") 

(3.2.6b) 

(1 + x")[x  n + (y /x)"]  -- ( x - "  + x"){(wy)" + (x/w)"] 
Y3(w, Y) X~ 

.=1  / n ( 1 -  y")(1 + x " )  

(3.2.6c) 

Then we have 

log  B2IIIG(w, X, y )  = log Po + Y1( w, x, y)  (3.2.7) 
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log KHC(W, X, y) = log Po q 
log w log(x3/y) 

2 log(xZ/y) ~- Yz(W, x, y) (3.2.8) 

1 
log Kw~c(w, x, y) = log Po + T log wZx + Y3(W, x, y) (3.2.9) 

We are particularly interested in the leading order singular behavior 
near criticality. To do this we apply the Poisson summation formula (5) to 
express the sums (3.2.6) as a series of Fourier integrals. The leading order 
behavior near criticality is then deduced from the n = 1 term of the series, by 
deforming the contour of integration around the poles of the integrand in the 
upper half-plane. Hence we deduce the leading order singular term in each of 
the regimes in Fig. 5 to be proportional to 

Regime I: (__p)r/(r-2s) (3.2.10a) 

Regime II: pr/(r-27 when s = 1; pr/2(r s) otherwise (3.2.10b) 

Regime III: 0 when s = 1, r odd; pr/2 log p when s = 1, r even 

pr/2~ otherwise (3.2.10c) 

Regimes IV and IV' :  (__p)r/2s (3.2.10d) 

Regime VIII: pr/2 (3.2.10e) 

Regime X: (__p)r log IPl (3.2.10f) 

where by 0 we man log ~ is in fact an analytic function of p at p = 0. In 
(3.10a, b, d, e) when r and s are such that the exponent o f p  is an integer the 
term is to be multiplied by log lpl. 

Note that since we are only considering the portion of the Re(v) - - r /  
plane given in Fig. 5 we have 0 < s/r < 1/2 (r, s relatively prime). When 
s = 1 in Regimes I - IV these values agree with those given in A. 

4.  S U M M A R Y  

We have completed a study of the restricted SOS model with weights 
given by (1.2.2) or equivalently (1.4.2), began in an earlier paper (1) (referred 
to throughout as A). Whereas in A we considered only the case r /=  K/r, r a 
positive integer ~>4, here we considered all cases r/-- sK/r, s and r relatively 
prime integers (r >~ 4). 

Both the free energy and local height probabilities are calculated. 
However in all cases except s = 1 the model is unphysical: there are negative 
Boltzmann factors. Thus the local height probabilities can be negative. In 
fact we find that at criticality they diverge. The singular part of the free 
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energy does not diverge at criticality. We given the leading order behavior in 
both cases. 

The calculation of the local height probabilities is of independent 
mathematical interest. Using the corner transfer matrix technique we obtain 
expressions for this quantity in terms of m-fold sums. We express these sums 
(which are generalizations of combinatorial sums in Schur's ~4) proof of the 
Roger's-Ramanujan identities) in terms of Gaussian polynomials, and show 
that in the limit m ~ oo they are modular forms. Thus the study of the 
statistical mechanical model has resulted in the discovery of further 
generalizations of the Rogers-Ramanujan identities (which are presumably 
related to Gordon's generalization~V'9)). 

A P P E N D I X  

The corner transfer matrix (C.T.M.) technique when applied to the 
definition (1.2.7) of the P~ has been described in detail in Appendix A of 
paper A. In particular we were able to obtain tractable expressions for the Pa 
[Eq. (A26) of paper A] in domains analogous to Regime III G with/~ 4: r - 1 
(1.4.10) and Regime IIo (1.6.10). The final expressions, analogous to (1.6.3), 
were then obtained by studying a special limiting case. 

The only difference needed in the present case to the procedure given in 
paper A to derive (A26) is essentially one of notation. Here we work with 
the conjugate modulus form of the weights (1.4.2), where the variable is w, 
rather than the weights (1.2.2), where v is the variable. Other than this Eqs. 
(A1)-(A25) represent the necessary working to obtain tractable expressions 
for the P~ in Regime III 6 (p 4: r -- 1) and Regime II 6. Thus following these 
workings step by step we derive the expression for P~, 

Pa = Tr Sa R2 e 2"m*/M'/Tr R2e -2'~tn'rm' (1) 

where 

(Sa)l,, = cS(l 1 , a) ~5(1, 1') (2) 

e x p [ ~ ( v - ~ I ) ~ / M ' ]  is the diagonal form of the single C.T.M. A, and in 
Regime III~/~ 4: r -- 1, 

t = 2, (R 1),2v = E(x t', y) 6(1, 1') (3) 

while in Regime II G 

t = 2 - r ,  (R1)~l,=xZ~/4y h/4E(xh, y)6(l,l') 

[we have used the notation 6(!, 1 ' )=  1~=1  6(Ik,/~)]. 

(4) 
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Recall from (1.4.4) that 

X 1/2 = e - 2 n n / M '  and wl /2  = e,~(~ . ) m '  (5) 

which expresses the above results in terms o f x  and w. In (2), (3), and (4) 1 = 
(/1,12,'", lm)  denotes the first m heights of the center row, beginning at the 
center height and moving right (recall from Section 1.6 the heights l m + 1, lm + 2 

and the fixed boundary heights of the center row). Further note the definition 
of the diagonal matrix ~Y" used here differs from that used in paper A by the 
scalar factor n / M ' .  

The matrix A is dependent on the boundary conditions. It is defined in 
terms of the local face transfer matrices m Uj where 

(Uj)II' = W(b ,  b+l  l b - l ,  q )  f i  6(lk,  Irk) 
k 1 

~J 

(6) 

We have 

A = F 2 F  3 ""  Fro+ 1 (7) 

where 

f j ---- ~m[](J)+ 1 --roll(J) Urn- 1 "'" Uj (8) 

the superfixes on U m +1 and U m denoting the fact that these matrices (but not 
U2,.. . ,  Urn- 1) depend on the boundary heights and hence the value o f j  in (8). 

The weights (1.4.2) are analytic functions of w 1/2, and thus from (5) are 
analytic functions of v of period 2 i M ' .  Hence within both Regimes IIo and 
III c the elements of the C.T.M. A and its diagonal form exp [(v - q ) ~ / M ' ]  

are analytic functions of v of period 2 i M '  and thus of the form 

[e (v rt)Tr"t'/M']l 1, = W N(I)/2 6(1, 1') (9) 

Assuming that ~,W does not change discontinuously with x, the integers 
N(I) must be independent of x. They can therefore be obtained by studying a 
particular case, the obvious choice being one in which the C.T.M. A is 
diagonal (or near diagonal). Note from (6) the off-diagonal elements of U i 
(and thus the C.T.M. A) involve the weights fit, while the diagonal elements 
involve the weights ?t and 6 I. Thus if we can choose a limit such that 

Ifl /(y,6,)l 0 (10) 

for l = 2, 3,..., r -- 2 the C.T.M. A is in its diagonal form. If/~ as defined by 
(1.4.7) is such that ~ and r are relatively prime (as is the case with the 



472 Forrester and Baxter 

potion of Regime IIIa corresponding to Regimes II and III, and in 
Regime II~ where/~ = 1) then (10) is realized in the limit x ~ 0 ,  w~- 1. We 
find the weights (1.4.2) (setting v = 1) become 

W(l, m'J l', rn) = w c~/''l'm') 61,m (1 1) 

where the function e is defined by (1.6.2). The C.T.M. A is then diagonal 
with entries 

A,,, = [w(b+l ,  6+2 I t j, 6+1)1: l ') 
j 1 

= w ~ (12) 

where 0(I) is given by (1.6.5). 
In the portion of Regime III G corresponding to Regimes I and IV with r 

even, we only require r and r to be relatively prime, so that/~ and r have 
the common factor 2. In these cases (10) fails for l =  r/2. This means 
nonzero off-diagonal elements of the C.T.M. A occur when 

l : r  and lj_ 1 =l:+ 1 = l j _ ,  =l j+ 1 = r / 2  (13) 

Thus A is block-diagonal, so can be readily be diagonalized: the diagonal 
form is again given by (12). 

Hence in all cases we have 
N(i) = 20(I ) (14) 

Replacing r / -  v by 2tr/in (9) and (5) gives 

[e -2 tn~ /M'] l  v = X te~(') ~(I, I') (15) 

Substituting (15) in (1) we obtain the results (1.6.4)-(1.6.6) and (1.6.12)-- 
(1.6.14). 
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